PROBLEM

剑指 Offer 10- II. 青蛙跳台阶问题

难度 简单

MY ANSWER

与求斐波那契数相同,f(n) = f(n - 1) + f(n - 2),只不过f(0) = 1, f(1) = 1。时间复杂度O(n),空间复杂度O(1)。

class Solution {
public:
int numWays(int n) {
int a = 1, b = 1, c = 0;
for(int i = 0; i < n; i++) {
c = (a + b) % 1000000007;
a = b;
b = c;
}
return a;
}
};

BETTER SOLUTION

矩阵快速幂

同样适用于求斐波那契数。时间复杂度O(logn),O(1)。

使用快速幂计算M的n次幂就可以得到结果。

class Solution {
public:
vector<vector<long long>> multiply(vector<vector<long long>> &a, vector<vector<long long>> &b) {
vector<vector<long long>> c(2, vector<long long>(2));
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];
}
}
return c;
}

vector<vector<long long>> matrixPow(vector<vector<long long>> a, int n) {
vector<vector<long long>> ret = {{1, 0}, {0, 1}};
while (n > 0) {
if ((n & 1) == 1) {
ret = multiply(ret, a);
}
n >>= 1;
a = multiply(a, a);
}
return ret;
}

int climbStairs(int n) {
vector<vector<long long>> ret = {{1, 1}, {1, 0}};
vector<vector<long long>> res = matrixPow(ret, n);
return res[0][0];
}
};

SUMMARY

掌握矩阵快速幂法。